Glucuronidation of thyroxine in human liver, jejunum, and kidney microsomes.

نویسندگان

  • Hiroyuki Yamanaka
  • Miki Nakajima
  • Miki Katoh
  • Tsuyoshi Yokoi
چکیده

Glucuronidation of thyroxine is a major metabolic pathway facilitating its excretion. In this study, we characterized the glucuronidation of thyroxine in human liver, jejunum, and kidney microsomes, and identified human UDP-glucuronosyltransferase (UGT) isoforms involved in the activity. Human jejunum microsomes showed a lower K(m) value (24.2 microM) than human liver (85.9 microM) and kidney (53.3 microM) microsomes did. Human kidney microsomes showed a lower V(max) value (22.6 pmol/min/mg) than human liver (133.4 pmol/min/mg) and jejunum (184.6 pmol/min/mg) microsomes did. By scaling-up, the in vivo clearances in liver, intestine, and kidney were estimated to be 1440, 702, and 79 microl/min/kg body weight, respectively. Recombinant human UGT1A8 (108.7 pmol/min/unit), UGT1A3 (91.6 pmol/min/unit), and UGT1A10 (47.3 pmol/min/unit) showed high, and UGT1A1 (26.0 pmol/min/unit) showed moderate thyroxine glucuronosyltransferase activity. The thyroxine glucuronosyltransferase activity in microsomes from 12 human livers was significantly correlated with bilirubin O-glucuronosyltransferase (r = 0.855, p < 0.001) and estradiol 3-O-glucuronosyltransferase (r = 0.827, p < 0.0001) activities catalyzed by UGT1A1, indicating that the activity in human liver is mainly catalyzed by UGT1A1. Kinetic and inhibition analyses suggested that the thyroxine glucuronidation in human jejunum microsomes was mainly catalyzed by UGT1A8 and UGT1A10 and to a lesser extent by UGT1A1, and the activity in human kidney microsomes was mainly catalyzed by UGT1A7, UGT1A9, and UGT1A10. The changes of activities of these UGT1A isoforms via inhibition and induction by administered drugs as well as genetic polymorphisms may be a causal factor of interindividual differences in the plasma thyroxine concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of afloqualone N - glucuronidation : Species differences and identification of human

Afloqualone (AFQ) is one of the centrally acting muscle relaxants. AFQ N-glucuronide is the most abundant metabolite in human urine when administered orally, while it was not detected in the urine when administered to rats, dogs, and monkeys. Species differences in AFQ N-glucuronidation were investigated with liver microsomes obtained from human and experimental animals. The kinetics of AFQ N-g...

متن کامل

Identification of human UDP-glucuronosyltransferase isoform(s) responsible for the glucuronidation of 2-(4-chlorophenyl)- 5-(2-furyl)-4-oxazoleacetic acid (TA-1801A).

We characterized the hepatic and intestinal UDP-glucuronosyltransferase (UGT) isoform(s) responsible for the glucuronidation of 2-(4-chlorophenyl)-5-(2-furyl)-4-oxazoleacetic acid (TA-1801A) in humans through several in vitro mechanistic studies. Assessment of a panel of recombinant UGT isoforms revealed the TA-1801A glucuronosyltransferase activity of UGT1A1, UGT1A3, UGT1A7, UGT1A9, and UGT2B7...

متن کامل

Characterization of afloqualone N-glucuronidation: species differences and identification of human UDP-glucuronosyltransferase isoform(s).

Afloqualone (AFQ) is one of the centrally acting muscle relaxants. AFQ N-glucuronide is the most abundant metabolite in human urine when administered orally, whereas it was not detected in the urine when administered to rats, dogs, and monkeys. Species differences in AFQ N-glucuronidation were investigated with liver microsomes obtained from humans and experimental animals. The kinetics of AFQ ...

متن کامل

Regioselective glucuronidation of denopamine: marked species differences and identification of human udp-glucuronosyltransferase isoform.

Denopamine is one of the oral beta(1)-adrenoceptor-selective partial agonists. Denopamine glucuronide is the most abundant metabolite in human, rat, and dog urine when administered orally. Species differences in denopamine glucuronidation were investigated with liver microsomes obtained from humans and experimental animals. In rat and rabbit, only the phenolic glucuronide was detected, whereas ...

متن کامل

Microsomal N-glucuronidation of nicotine and cotinine: human hepatic interindividual, human intertissue, and interspecies hepatic variation.

Two of the abundant conjugates of human nicotine metabolism result from the N-glucuronidation of S-(-)-nicotine and S-(-)-cotinine, transformations we recently demonstrated in liver microsomes. We further studied these microsomal N-glucuronidation reactions with respect to human hepatic interindividual, human intertissue, and interspecies hepatic variation. The reactivities of microsomes from h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 35 9  شماره 

صفحات  -

تاریخ انتشار 2007